科里奥利力(地球上的科里奥利力是怎么回事)

白小白

什么叫科里奥利力?

科里奥利力(Coriolis force)有些地方也称作哥里奥利力,简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力来自于物体运动所具有的惯性。

扩展资料:

地球上的科里奥利力是怎么回事

地球上的科里奥利力是怎么回事

科里奥利力简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。科里奥利力来自于物体运动所具有的惯性。

旋转体系中质点的直线运动科里奥利力是以牛顿力学为基础的。1835年,法国气象学家科里奥利提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。

科里奥利力 地理题

正确。

科里奥利力的计算公式如下:

F=-2mv×ω

式中F为科里奥利力;m为质点的质量;v为质点的运动速度;ω为旋转体系的角速度;×表示两个向量的外积符号。

根据此公式,赤道角速度最小,两极角速度更大,所以科里奥利力在赤道处最小,在两极处更大。

科里奥利力公式

应该是F=-2mv×ω吧。

在这是 的“-”应该是定的方向和你定的不同而已。

但是你上面的两个不是一样的吗,要真说不同,那也应该是F=2m(v*w)比较合适,因为mv是一体的啊。

哦原来你说的是这意思啊,不好意思。应该是F=2m(w*v)的,这个在百科那里有的:1)外积的反对称性:

a × b = - b × a.

在这里::ke../view/981992.?wtp=tt

地球自转偏向力是科里奥利力吗

当物体相对与地球表面运动时会受到一个叫地转偏向力的力的影响而改变方向,但地转偏向力并不是一个真正的力,而是一种惯性力。地转偏向力对航天,航空来说是一种不可忽视的力,地转偏向力在极地最显著,向赤道方向逐渐减弱直到消失在赤道处,而且在日常生活中地转偏向力很小,是忽略不计的。

科里奥利力是以牛顿力学为基础的。1835年,法国气象学家和工程师科里奥利提出,为了描述旋转体系的运动,需要在运动方程中引入一个假想的力,这就是科里奥利力。引入科里奥利力之后,人们可以像处理惯性系中的运动方程一样简单地处理旋转体系中的运动方程,大大简化了旋转体系的处理方式。由于人类生活的地球本身就是一个巨大的旋转体系,因而科里奥利力很快在流体运动领域取得了成功的应用。

地球上的物体运动受到科里奥利力的作用吗

选b,当选择非惯性参考系时就要考虑科式力。

地球属于非惯性系,只是一般科式力所占比重很小不考虑。

科里奥利力公式推导

设在距圆心为r的时刻,径向速度为v沿Y轴正向,切向速度为wr沿轴X正向。则经历短暂时间dt后,X轴速度为vx=vsinwdt+w(r+vdt)coswdt,因为wdt为小角度,所以sinwdt=wdt,coswdt=1,所以X轴速度改变数dvx=vx-wr=2vwdt,同理,Y轴速度改变数为dvy=vcoswdt-w(r+vdt)sinwdt-v=w^2*rdt,所以F切(即科氏力)=mdvx/dt=2mvw,F法(即向心力)=mw^2*r

有关科里奥利力的问题

科氏力表示式为角速度叉乘速度,故由叉乘定义垂直于其二者平面

科里奥利力是什么?及其应用。

科里奥利力

在旋转体系中进行直线运动的质点,由于惯性,有沿着原有运动方向继续运动的趋势,但是由于体系本身是旋转的,在经历了一段时间的运动之后,体系中质点的位置会有所变化,而它原有的运动趋势的方向,如果以旋转体系的视角去观察,就会发生一定程度的偏离。当一个质点相对于惯性系做直线运动时,相对于旋转体系,其轨迹是一条曲线。立足于旋转体系,我们认为有一个力驱使质点运动轨迹形成曲线,这个力就是科里奥利力。

科里奥利力的应用

人们利用科里奥利力的原理设计了一些仪器进行测量和运动控制。

1 质量流量计

质量流量计让被测量的流体通过一个转动或者振动中的测量管,流体在管道中的流动相当于直线运动,测量管的转动或振动会产生一个角速度,由于转动或振动是受到外加电磁场驱动的,有着固定的频率,因而流体在管道中受到的科里奥利力仅与其质量和运动速度有关,而质量和运动速度即流速的乘积就是需要测量的质量流量,因而通过测量流体在管道中受到的科里奥利力,便可以测量其质量流量。应用相同原理的还有粉体定量给料秤,在这里可以将粉体近似地看作流体处理。

2 陀螺仪

旋转中的陀螺仪会对各种形式的直线运动产生反映,通过记录陀螺仪部件受到的科里奥利力可以进行运动的测量与控制。

科里奥利力产生的影响

1 在地球科学领域

由于自转的存在,地球并非一个惯性系,而是一个转动参照系,因而地面上质点的运动会受到科里奥利力的影响。地球科学领域中的地转偏向力就是科里奥利力在沿地球表面方向的一个分力。地转偏向力有助于解释一些地理现象,如河道的一边往往比另一边冲刷得更厉害。

2 傅科摆

摆动可以看作一种往复的直线运动,在地球上的摆动会受到地球自转的影响。只要摆面方向与地球自转的角速度方向存在一定的夹角,摆面就会受到科里奥利力的影响,而产生一个与地球自转方向相反的扭矩,从而使得摆面发生转动。1851年法国物理学家傅科预言了这种现象的存在,并且以实验证明了这种现象,他用一根长67米的钢丝绳和一枚27千克的金属球组成一个单摆,在摆垂下镶嵌了一个指标,将这个巨大的单摆悬挂在教堂穹顶之上,实验证实了在北半球摆面会缓缓向右旋转(傅科摆随地球自转)。由于傅科首先提出并完成了这一实验,因而实验被命名为傅科摆实验。

3 信风与季风

地球表面不同纬度的地区接受阳光照射的量不同,从而影响大气的流动,在地球表面延纬度方向形成了一系列气压带,如所谓“极地高气压带”、“副极地低气压带”、“副热带高气压带”等。在这些气压带压力差的驱动下,空气会沿着经度方向发生移动,而这种沿经度方向的移动可以看作质点在旋转体系中的直线 科里奥利力

运动,会受到科里奥利力的影响发生偏转。由科里奥利力的计算公式不难看出,在北半球大气流动会向左偏转,南半球大气流动会向右偏转,在科里奥利力、大气压差和地表摩擦力的共同作用下,原本正南北向的大气流动变成东北-西南或东南-西北向的大气流动。 随着季节的变化,地球表面延纬度方向的气压带会发生南北漂移,于是在一些地方的风向就会发生季节性的变化,即所谓季风。当然,这也必须牵涉到海陆比热差异所导致气压的不同。 科里奥利力使得季风的方向发生一定偏移,产生东西向的移动因素,而历史上人类依靠风力推动的航海,很大程度上集中于延纬度方向,季风的存在为人类的航海创造了极大的便利,因而也被称为贸易风。

4 热带气旋

5 对分子光谱的影响

科里奥利力会对分子的振动转动光谱产生影响。分子的振动可以看作质点的直线运动,分子整体的转动会对振动产生影响,从而使得原本相互独立的振动和转动之间产生耦合,另外由于科里奥利力的存在,原本相互独立的振动模之间也会发生能量的沟通,这种能量的沟通会对分子的红外光谱和拉曼光谱行为产生影响。

科里奥利力coriolis的原理是什么

科里奥利力(Coriolis force)简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述。

科里奥利力的计算公式如下:

F=m*v*w

式中F为科里奥利力;m为质点的质量;v为质点的运动速度;w为旋转体系的角速度;*表示两个向量的外积符号。

科氏加速度与科里奥利力

当空气环绕着旋转的地球表面远距离移动时,它最初的向东的动量在地表开始改变。我们知道,地球是由西向东旋转的,赤道地区旋转的线速度更大,随着纬度越高,线速度越来越小,到了极点减为零。设想空气从低纬度地区移向北极:在最初,空气是具有与源地相同的向东速度的;当空气接近极点时,在那儿的地球转动为零,而这股空气却继续保持着它原来的向东的动量(假设没有因为摩擦而耗损的话),于是它会相对于目的地的地表转向东面。这样,即使空气以相当直的路线越过纬线向极地方向前进,相对于地球,它看起来会是同时朝东转向越过经线。

一个名叫古斯塔·加斯佩德·科里奥利的法国人在1835年更先用数学 *** 描述了这种效应,所以科学界用他的姓氏来命名此种力。我们通常也称它为地转偏向力。在北半球,科里奥利力使风向右偏离其原始的路线;在南半球,这种力使风向左偏离。风速越大,产生的偏离越大。于是,在北半球,当空气向低压中心辐合时会向右弯曲,形成了一个逆时针方向的旋转气流。从高压中心辐散出来的空气,则因为向右弯曲而形成了顺时针方向的旋风。我们把逆时针旋转的叫做气旋,把顺时针旋转的叫做反气旋。在南半球,上述的情形正好相反。

科里奥利效应使风在北半球向右转,在南半球向左转。此效应在极地处最明显,在赤道处则消失。如果没有地球的旋转,风将会从极地高压吹向赤道低压地区。

科里奥利效应在极地最显著,向赤道方向逐渐减弱直到消失在赤道处。这就是为什么台风只能仅仅使云形成在5纬度以上的地区。

科里奥利力不仅仅对风产生影响,任何一个环绕地表的远距离运动都会受到它的捉弄。在一战期间,德军用他们引以自豪的射程为113千米的大炮轰击巴黎时,懊恼地发现炮弹总是向右偏离目标。直到那时为止,他们从没担心过科里奥利力的影响,因为他们从没有这样远距离的开火。

当然,对于近距离的运动,科里奥利力影响极小。从场地一边把篮球抛到另一边的运动员,考虑科里奥利力的影响而需要调整自己投球的偏移量为1.3厘米。

在大气层的高处,科里奥利效应是一个重要的因素。在大约5500米或更高的地方,空气没有与大山、树木的摩擦,它能够不断地增强力量并达到惊人的速度。当气压差不断地把这些风推向低压地区时,空气就会受科里奥利力的影响而转向,最终会沿着等压线吹动。

通俗详细地讲解一下科里奥利力

科里奥利力是以像地球一样的自身旋转的参考系(非惯性系)下,做直线运动的物体由于惯性,会保持原来的运动状态,在自身旋转的参考系下,好像受到一个外力,偏离了运动方向,这个假想的力就是科里奥利力。

F=-2mv'×ω,式中F为科里奥利力;m为质点的质量;v'为相对于转动参考系质点的运动速度(矢量);ω为旋转体系的角速度(矢量);×表示两个向量的外积符号(v'×ω:大小等于v'的大小乘以ω的大小再乘以两矢量夹角的正弦值,方向满足右手螺旋定则)。如图:

地转偏向力中ω、v两矢量夹角等于纬度。

在台风中与气压梯度力结合起来是科里奥利力的实际应用。如图

理科生需要掌握的基本知识是科里奥利力的公式以及应用即可。

望采纳

科里奥利力

由以上分析,获得了科里奥利加速度(ak),即:

ak=2ω×vr

那么,科里奥利力(Fk)则等于:

地球动力与运动

对于处于地球的水体或陆块或油气,其所受科里奥利力的计算式为:

地球动力与运动

式中,φ为质点所处地球的地理纬度;ρ为质点所属物质的密度。显然,φ越大,Fk越大;φ越小,Fk越小,φ=0,Fk=0。

由于科里奥利力垂直于ω和vr确定的平面,在北半球的科里奥利力作用方向与在南半球的科里奥利力作用方向不同。

所以,地球上陆块、油(气)、海水、大气等的运动应该具有显著的科里奥利效应。

设P代表油气质点,建立如图7-2的坐标,z轴沿地面法线方向向外,x轴指向南,y轴指向东,P点的初始指向沿所处经线由南向北运移,此时

ωx=-ωcosΦ

ωy=0

ωz=ωsinΦ

图7-2科里奥利偏移分析

受科里奥利力影响,质点P发生向东偏移,因而产生北东向的运移轨迹。

科里奥利力引导质点发生偏移这一性质,与质点的运动方向相关联,分析某一地方的质点运移方向时,一定要结合当地的实际情况加以运用,否则,就会产生错误。如一个生油凹陷的油气,克服了地球自转和公转引起的力的作用,发生了由西向东运移,则此时科里奥利力导致油气发生向南偏移,等等。

就一个地球球面质点来计算科里奥利力的数量级是不难的。地球相对于恒星以角速度

地球动力与运动

绕北极逆时针转动。这里之一个括号内计算出相对于太阳的矢径角速度,第二个括号内为一年内恒星数与相应太阳日数的比率,给出了相对于恒星的角速度的改正因子。科里奥利加速度的量值始终小于

2wv≈1.5×10-4v

在许多场合,一个与转动着的地球固定在一起的坐标系是一个足够近似的惯性系。科里奥利力存在于惯性转动系统中运动的质点上。

科里奥利力产生的原因是什么

科里奥利力(其中一个很重要的表现是地转偏向力)的实质如下:

由于不受外力,线速度保持恒定,随着半径的改变,角速度也发生改变,而参照系的任一点角速度相等,从而产生角速度差,看上去便是发生了偏移。

以地转偏向力为例:

物体(比如题里常用的炮弹,飞机等)的线速度(即东西方向的分速度)由于不受外力在不同的位置始终保持一定(比如炮弹的线速度始终等于炮台的线速度),所以在不同的半径下(即不同的纬度)所对应的角速度(根据ω=v/r)不同,而地球表面的任意一点的角速度都相等,所以导致炮弹的角速度与地面角速度不相等,如果以地面为参考系看上去就是往某个东(或往西)偏移了。

具体一点说:在赤道有一炮台对准北极点打一炮,则他的起始线速度和角速度等于地球赤道某点的线速度和角速度,这枚炮弹不论在什么位置,线速度(东西方向的分速度)始终等于地球赤道上炮台的线速度,但随着他向北飞行,炮弹做圆周运动的半径减小,他的角速度就会增大,而地面上任意一点的角速度相等,等于360°每天。所以这枚炮弹在东西方向运动的比地面上某一点更快,看上去就是往右(东)偏离。

科里奥利力coriolis的原理是什么 科里奥利力的原理具体是什么

科里奥利力(Coriolis force)简称为科氏力,是对旋转体系中进行直线运动的质点由于惯性相对于旋转体系产生的直线运动的偏移的一种描述.

科里奥利力的计算公式如下:

F=m*v*w

式中F为科里奥利力;m为质点的质量;v为质点的运动速度;w为旋转体系的角速度;*表示两个向量的外积符号.

精彩内容